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Abstract

Recent numerical and analytical studies have demonstrated that added-mass effects acting on bluff

bodies moving in viscous, time-dependent flows are independent of the Reynolds number, acceleration
strength and steady/unsteady nature of the flow field. We discuss the origin of this crucial result and show

how it can be used to derive the equations governing the motion of a non-deformable body moving freely in

an arbitrary time-dependent, viscous flow. Then we show how these equations can be employed in con-

junction with the Navier–Stokes equations to solve numerically the coupled problem in which the presence

of the body modifies the surrounding flow which itself determines the trajectory of the body. Numerical

tests of this coupling are presented. We finally apply the coupled set of equations to analyze the path in-

stability of ellipsoidal bubbles rising at high Reynolds number. We show that numerical results recover the

main experimental trends, an agreement suggesting that path instability is primarily driven by the insta-
bility of the wake which is itself crucially dependent on the curvature of the bubble surface.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

During the last decade a considerable effort has been devoted to the numerical investigation
of hydrodynamic forces acting on solid particles, liquid drops and gas bubbles. The common aim
of such studies is to obtain an accurate description of the forces acting on individual particles in
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well-defined flows in order to provide a sound basis for describing complex dispersed flow with a
low or moderate volume concentration of the dispersed phase. Most of these numerical studies
have considered a fixed body submitted to a prescribed flow. This point of view is very efficient for
determining the hydrodynamic forces such as quasi-steady viscous drag, added-mass or shear-
induced lift. However when this simplification is used, it is not possible to take into account the
influence that the force and torque balances over the body surface may have on the global dy-
namics of the system. For instance, when an ellipsoidal bubble moves into a shear flow, the
condition of zero torque imposes a restriction on the orientation of the bubble and this has crucial
consequences on its lateral motion (Magnaudet and Eames, 2000). Similarly, it is now clear that
the critical Reynolds number beyond which the wake of a solid bluff body becomes unstable and
develops vortex shedding is dramatically dependent on the fact that the body is free to move or
not (Cossu and Morino, 2000; Govardhan and Williamson, 2000). Hence, to get new insight into
the dynamics of freely moving particles or bodies, it is highly desirable to develop a formulation
of the problem in which the flow field governed by the Navier–Stokes equations and the motion of
the body governed by Newton�s laws are considered together. This is the aim of the present
contribution. As will be shown later this coupling opens the possibility to describe how wake
instabilities affect the trajectory of a rigid body and how in turn the motion of the body may
influence wake characteristics.

In the classical framework of inviscid potential flow theory, it is easy to obtain the general
equations governing the motion of a non-deformable body of arbitrary shape. This is most easily
done by evaluating first the kinetic energy of the whole (body and fluid) system and then applying
general principles of classical mechanics. The case of a rigid body moving in an unbounded in-
compressible fluid at rest at infinity was considered more than one century ago by Kirchhoff (see
Lamb, 1945, Chapter 6); later, this formulation was extended to the case of bodies moving in
steady non-uniform irrotational flows by Taylor (1928). The more general case of a body moving
in an arbitrary time-dependent non-uniform irrotational flow was addressed by Landweber and
Miloh (1980) and Galper and Miloh (1995) (see also Saffman, 1992, pp. 87–92). In these situa-
tions, the motion of the body is completely governed by added-mass effects. The problem becomes
much more difficult in presence of viscous effects because vorticity is then generated on the body
surface and can be shed in the wake. In this case the forces and torques acting on the body are due
to a combination of added-mass effects, skin friction and free vorticity (Howe, 1995). However,
DNS studies performed during the last decade (see Magnaudet and Eames, 2000 for a review)
have shown that added-mass effects can still be properly defined in a viscous flow (they correspond
to the instantaneous change of the hydrodynamic force and torque produced by a relative ac-
celeration between the body and fluid), and that added-mass coefficients are then independent of
all flow characteristics such as the instantaneous Reynolds number, Strouhal number, etc.
Moreover these studies have also proved that added-mass effects are independent of the nature of
the body surface, i.e. they are not affected by changing the no-slip condition at the body surface
into a free-slip one or vice versa. This result is extremely important because it allows us to separate
conveniently those of the hydrodynamic effects which are due to vorticity (and hence can only be
evaluated in general through a numerical solution of the Navier–Stokes equations) from those
which result from the kinematic constraint provided by the vanishing of the relative normal ve-
locity at the body surface and are thus described by irrotational flow theory. This is the general
framework in which we have analyzed and formulated the general fluid-body problem.
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In Section 2 we recall the origin of Kirchhoff�s equations for irrotational flows around moving
bodies and how these equations can be generalized to viscous, rotational flows. This general-
ization is made possible by the fact that added-mass contributions are not affected by rotational
effects, a crucial result whose origin is discussed in Appendix A. In Section 3 we detail how the
Navier–Stokes equations can be written and coupled with the force and torque balances which
determine the motion of the body. Section 4 is devoted to a short description of the numerical
techniques used to solve the coupled problem and to some tests of this numerical coupling. Finally
in Section 5 we apply the material developed before to study the influence that the aspect ratio of
an ellipsoidal shear-free bubble rising under gravity may have on the nature of its path. We show
that this nature depends crucially on the topology of the near wake of the bubble.

2. Motion of a rigid body through an unbounded fluid

Let us consider a rigid body (B) of mass m, volume V and centre of mass O moving in an
incompressible fluid of density q and kinematic viscosity m, at rest at infinity. We denote by (Sb)
(resp. (S1)) the body surface (resp. the fictitious outer fluid boundary) and by U (resp. X) the
velocity of the centre of mass (resp. rotation rate) of the body (Fig. 1).

In order that all components of the added-mass tensor be independent of time, we write the
governing equations in a frame of reference whose axes rotate at a rate X, so that these axes can
always be chosen to be parallel to the principal axes of the body. For the sake of simplicity we
restrict our description to bodies with three perpendicular planes of symmetry, but the method
applies equally well to general geometries. When such bodies move into an unbounded inviscid
fluid at rest at infinity, the kinetic energy of the surrounding fluid may be written in the form
(Lamb, 1945, Art. 127):

2T ¼ U � ðAUÞ þ X � ðDXÞ ð2:1Þ

Fig. 1. The fluid-body system.
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whereA andD are second-order diagonal tensors characterizing the mass of fluid set in motion by
a translation and a rotation of the body, respectively (with the above notations, A (resp. D) has
the dimension of a mass (resp. a moment of inertia)). Using for instance Lagrange�s formalism,
one readily obtains Kirchhoff�s equations describing the linear and angular momentum balance
for the complete fluid/body system (Lamb, 1945, Art. 127) in the form:

ðmIþAÞdU
dt

þ X � ððmIþAÞUÞ ¼ 0 ð2:2aÞ

ðJþDÞ dX
dt

þ X � ððJþDÞXÞ þU� ðAUÞ ¼ 0 ð2:2bÞ

where I is the unit tensor and J the inertia tensor of the body. In Eqs. (2.2a) and (2.2b) we have
assumed that no external force or torque acts on the system but it is well known that such
contributions can straightforwardly be added to the right-hand side, provided they result from a
conservative process.

In real situations the fluid is viscous and vorticity exists around the body, either because it is
generated right at the body surface, or because the body moves in a rotational flow, or both.
Existence of vorticity in the flow results in a major difficulty in the analysis of hydrodynamic
forces and torques acting on the body because contributions due to the impermeability condition
at the body surface act together with those due to the pressure changes induced by vortex forces
and those due to viscous effects at the body surface (skin friction). This situation has resulted in
many errors and erroneous beliefs, such as empirical ‘‘laws’’ giving the variations of the added-
mass coefficients as a function of the flow Reynolds number and Strouhal number (see Mag-
naudet, 1997 for a short review). This crucial question has only been clarified recently in a
combined effort involving DNS studies and analytical contributions aimed to separate properly
these various contributions. In a remarkable analysis, Howe (1995) showed rigorously that when a
body moves within a viscous, rotational flow at rest at infinity, Kirchhoff�s equations can be put
within the form:

ðmIþAÞdU
dt

þ X � ððmIþAÞUÞ ¼ Fx þ ðm� qVÞg ð2:3aÞ

ðJþDÞ dX
dt

þ X � ððJþDÞXÞ þU� ðAUÞ ¼ Cx ð2:3bÞ

where Fx and Cx are the force and torque resulting from the existence of vorticity in the flow,
respectively. For the sake of completeness, we have added a buoyancy force due to gravity g in the
right-hand side of Eq. (2.3a) and have assumed that the fluid and the body have constant den-
sities. Howe (1995) also showed how Fx and Cx can be split into two contributions resulting from
the effects of free vorticity and skin friction, respectively; this splitting is physically meaningful but
it will not be used here because we generally need to obtain Fx and Cx through a numerical
solution of the Navier–Stokes equations. The crucial point in Eqs. (2.3a) and (2.3b) is that the
added-mass effects can still be properly defined and that the added-mass coefficients (i.e. the
components of tensors A and D) have the same value as in the original Kirchhoff equations
(2.2a) and (2.2b). A mathematical justification helping to understand why this is so is given in
Appendix A.
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3. The governing equations of the fluid-body system

To solve numerically the Navier–Stokes equations around a moving non-deformable body, it is
particularly convenient to identify any point M of the space in a system of axes whose origin and
directions coincide at any time with the geometric centre O and principal axes of the body, re-
spectively. In this system of axes, M is characterized by a distance vector r such that OM ¼ krk.
The key advantage of this choice is that, when the fluid domain is unbounded externally, the
numerical grid does not change with time, so that no remeshing is required. Then, to express the
governing equations, the most obvious option would be to introduce the velocity V0 defined
relatively to these translating and rotating axes, as is generally done in geophysical fluid dynamics
or in flows in turbomachinery. However this choice has some drawbacks in the context of freely
moving bodies. For instance, the magnitude of the velocity takes large values far from the body,
since V0 must equal �ðUþ X � rÞ at infinity; this can induce numerical difficulties (in terms of
maximum time step) and can lead to poor accuracy. Moreover, the corresponding momentum
balance comprises pseudo-forces involving the time-derivatives dU=dt and ðdX=dtÞ � r. Since U
and X are two unknowns of the problem that necessarily keep a constant value within each time
step (because the geometry of the fluid/body system is temporarily frozen), it is not possible to
evaluate accurately these time derivatives directly within the Navier–Stokes equations. To avoid
these difficulties, it is more convenient to use another option in which the Navier–Stokes equa-
tions are written for the velocity field V obtained by projecting the absolute velocity field eVV onto
rotating axes parallel to those defined above but referred to a fixed arbitrary origin eOO. This choice
avoids the problems mentioned above. Moreover it has the advantage that the velocity field
coming out from the numerical solution corresponds to the disturbance flow produced by the
moving body (because V tends to zero at large distances) and that the three velocity components
can directly be interpreted as the streamwise, cross wise and spanwise components with respect to
the instantaneous position of the body.

To obtain the Navier–Stokes equations corresponding to the latter choice we need to combine
three results. First, the geometrical velocity at which the control volume centered at M moves is:

W ¼ Uþ X � r

Then, using Leibnitz�s rule, the relation between the material derivative of any physical variable /
integrated over a control volume Vc and its derivative following the velocity W is:

D
Dt

Z
Vc

/dV ¼ o

ot

Z
Vc

/dVc þ
Z
oVc

/ðV�WÞ � nds

where n denotes the outward unit normal to oVc. In local form this yields:

D/
Dt

¼ o/
ot

þ ðV�WÞ � r/ ¼ o/
ot

þr � ð/ðV�WÞÞ

Third, in the case where / ¼ eVV we need to project the latter relation onto the rotating axes.
Since the projection of oeVV=ot on these axes is oV=ot þ X � V, we finally obtain the Navier–Stokes
equations within the form (Mougin, 2002):

r � V ¼ 0 ð3:1aÞ
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oV

ot
þ X � V þr � ðVðV�WÞÞ ¼ 1

q
rP þ mr2V ð3:1bÞ

The associated boundary conditions are (n being the local outward unit normal to (Sb)):

V � n ¼ ðUþ X � rÞ � n on ðSbÞ ð3:2aÞ
n� V ¼ n� ðUþ X � nÞ on ðSbÞ for a solid body ð3:2bÞ
n� ððrVþ TrVÞ � nÞ ¼ 0 on ðSbÞ for a free-slip body ð3:2cÞ
V! 0 for krk ! 1 ð3:2dÞ

It is clear that the vorticity-induced force and torque Fx and Cx of Eqs. (2.3a) and (2.3b) result
directly from the integration of the pressure and viscous stress determined by Eqs. (3.1a) to (3.2d).
What is less straightforward is to identify the part of the added-mass effects that are included in
the pressure field P involved in Eq. (3.1b), keeping in mind that U and X are kept constant within
a time step. To determine these added-mass contributions, let us consider the case where the body
(B) is a sphere of radius R translating at a velocity U and rotating with a rotation rate X such that
U and X, are not parallel. Owing to boundary conditions (3.2a) and (3.2d), the corresponding
irrotational solution is:

V ¼ � 1

2

R3

r3

� �
U � I

�
� 3

rr

r2

�
because the rotation rate X does not induce any fluid displacement for a sphere. Injecting this
solution into Eq. (3.1b) and evaluating the pressure field due to the advective contribution
�r:ðVðX � rÞÞ yields after integrating over (Sb):

F ¼ �q
V

2

� �
X �U

which is exactly (with a change of sign) the last contribution in the left-hand side of Eq. (2.3a) for
the particular case of a sphere ðA ¼ qðV=2ÞIÞ. Considering bodies for which D differs from zero
and A is not spherical (for instance ellipsoids), we would similarly conclude that the last two
contributions in the left-hand side of the torque balance (2.3b) result from the integration of
�Pr� n over the body surface. Consequently the only added-mass contributions which are not
directly obtained from the integration of (3.1a), (3.1b), (3.2a), (3.2b) over a time interval during
which U and X are kept constant are those corresponding to the time-derivatives dU=dt and
dX=dt. In this sense, integration over (Sb) of the stress RQS ¼ �PIþ qmðrVþ TrVÞ obtained at
time t from (3.1a) to (3.2d) yields the ‘‘quasi-static’’ contribution to the hydrodynamic force and
torque, FQSðtÞ and CQSðtÞ say, defined by:

FQSðtÞ ¼
Z
Sb

RQS � nds

CQSðtÞ ¼
Z
Sb

r� ðRQS � nÞds

The terminology ‘‘quasi-steady’’ must however not be misunderstood. It means by no way that
FQS and CQS do not comprise time-dependent contributions since these force and torque are
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obtained by solving the unsteady Navier–Stokes equations for prescribed values of U and X. In
particular, unsteady diffusion of vorticity from the surface of the body into the fluid interior
contributes to FQS; in the low-Reynolds-number regime this contribution is just the so-called
Basset history force. Turning back to Eqs. (2.3a) and (2.3b) we conclude that the correct form of
the Kirchhoff equations that must be associated with the flow equations (3.1a) to (3.2d) to de-
termine completely the motion of the body is:

ðmIþAÞ dU
dt

þ mX �U ¼ FQSðtÞ þ ðm� qVÞg ð3:3aÞ

ðJþDÞ dX
dt

þ X � ðJXÞ ¼ CQSðtÞ ð3:3bÞ

Using the results discussed in Section 2, we know that the components of A and D are just those
determined by irrotational flow theory, even though we are considering rotational viscous flows,
possibly with time-dependent effects.

4. Numerical solution and tests of the coupled problem

The numerical solution of the Navier–Stokes equations (3.1a) and (3.1b) was obtained by
adapting the JADIM code already developed in our group; this adaptation consisted in intro-
ducing the terms X � V and �r � ðVWÞ involved in the left-hand side of Eq. (3.1b). The code
solves the three-dimensional unsteady Navier–Stokes equations and has already been thoroughly
described in several publications, e.g. Magnaudet et al. (1995), Calmet and Magnaudet (1997) or
Legendre and Magnaudet (1998). Let us just mention that the momentum equations are for-
mulated in a general system of orthogonal curvilinear coordinates. The discretization makes use
of a staggered mesh and equations are integrated through a second-order time-accurate Runge–
Kutta/Crank–Nicolson algorithm. Incompressibility is satisfied at the end of each time step by
solving a Poisson equation for an auxiliary potential from which the pressure is deduced. It is
important to stress that the velocity field obtained at this stage (say Vðt þ DtÞ where Dt denotes the
time step) is the incompressible solution of the full Navier–Stokes equations corresponding to the
translational and rotational velocities VðtÞ and XðtÞ that the body had at time t. In other terms,
this would be the solution of the complete problem if the values of V and X would not change over
time.

Once FQSðt þ DtÞ and CQSðt þ DtÞ are obtained at the end of each time step of length Dt, the
modified Kirchhoff equations (3.3a) and (3.3b) are solved using a pseudo-Runge–Kutta scheme.
This yields the new values Uðt þ DtÞ and Xðt þ DtÞ to be used in the boundary conditions (3.2a)–
(3.2c) of the next time step. However, since the time variation Uðt þ DtÞ �UðtÞ ¼ DU and
Xðt þ DtÞ � XðtÞ ¼ DX is actually associated with an instantaneous change in the velocity and
pressure fields in the whole fluid domain (DV and DP , say), it is necessary to compute this change
just after having updated U and X. This is the only way in which the velocity field used at the
beginning of the new time step can be made consistent with the kinematic boundary condition
(3.2a). To obtain this consistency, we use the results of the analysis detailed in Appendix A and
rewrite Eq. (A.6) for DV in the form:
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DV
Dt

¼ � 1

q
rðDP Þ ð4:1Þ

From this relation we conclude that DP obeys a Laplace equation associated with the boundary
condition:

n � rðDP Þ ¼ � q
Dt
n � DV ¼ � q

Dt
ðn � DUþ ðr� nÞ � DXÞ on ðSbÞ ð4:2Þ

Having solved (4.1) and (4.2), we finally compute the velocity and pressure fields Vþ DV and
P þ DP which are the initial fields of the new time step.

It must be pointed out that, even though all the equations involved in the problem are nu-
merically solved with second-order time-accurate schemes, the time accuracy of the instantaneous
values of the resulting force and torque is less. This is due to the fact that the coupling scheme
(3.1a), (3.1b), (3.2a)–(3.2d), (3.3a) and (3.3b) combined with Eqs. (4.1) and (4.2) only takes into
account the instantaneous, irrotational effects of the changes dU=dt and dX=dt. Actually these
time variations in the boundary conditions also induce a change in the vorticity at the body
surface. Physically, during a time step Dt this vorticity diffuses throughout a Stokes layer of
thickness dsðDtÞ  ðmDtÞ1=2 and this diffusion is not taken immediately into account in the present
coupling scheme. In the numerical process described above, a vortex sheet is created right at the
surface by the velocity change DV at the end of each time step but the diffusion of this vortex sheet
is only taken into account during the next time step. The error induced by this procedure can be
rigorously evaluated by examining the short-time behaviour of the Navier–Stokes equations as-
sociated with the disturbance DV. This analysis is carried out at the end of Appendix A where we
show that the error on the force and torque is OðDt1=2Þ in the case of a solid body and OðDtÞ for a
shear-free body.

To study the flow around axisymmetric bodies, we construct the numerical grid by first gen-
erating a plane grid whose outer boundary is a large circle centered at the geometrical centre of the
body and then rotating this grid about the axis of symmetry of the body. Most of the compu-
tations reported below have been carried out on a grid made of 65� 59� 64 nodes in the me-
ridian, radial, and azimuthal direction, respectively. The grid is highly stretched in the radial
direction in order to ensure that at least five grid points lie within the boundary layer surrounding
the body. The radius of the fictitious outer boundary is chosen to be 50 times the equivalent radius
of the body.

Extensive numerical tests have been carried out in order to make sure that the supplementary
terms of Eq. (3.1b) are correctly discretized and that the differential system (3.3a) and (3.3b) is
accurately solved. A revealing test consists in giving a rotation X about a horizontal axis to a clean
(i.e. shear-free) spherical bubble that has already reached its terminal velocity under the effect of
gravity. Owing to the spherical geometry of the body, the free-slip boundary condition forces the
torque CQSðtÞ on the bubble to be zero at any time. More generally the rotation rate X must have
strictly not influence on the dynamics of the system and the bubble path must remain vertical and
rectilinear. Note that, since Eq. (3.3a) is written in the rotating axes, a constant U in presence of a
non-zero X would mean that the bubble would describe open loops. In order to prevent the
occurrence of such loops, it is clear that dU=dt must differ from zero and that the force FQSðtÞ in
the right-hand side of Eq. (3.3a) must contain a term balancing this centripetal acceleration.
Obviously the required term is just the added-mass contribution �X � ðAU). The precision with
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which this term is taken into account in the coupled resolution of Eqs. (3.1a), (3.1b), (3.2a)–(3.2d),
(3.3a) and (3.3b) can be evaluated by measuring the ratio of the transverse (horizontal) velocity to
the vertical one. The results presented in Table 1 show that the lateral deviation of the path re-
mains very small, even after the rotation angle has reached large values. Moreover, dividing the
horizontal component of FQSðtÞ by kUkkXk yields the numerical value of the corresponding
added-mass coefficient. Table 1 shows that this value is very close to that predicted by irrotational
theory. This can be seen as an additional numerical proof that added-mass coefficients are not
affected by effects of vorticity and viscosity.

Using a similar technique, all the added-mass contributions contained in Eq. (3.1b), especially
those involved in the last two terms of the left-hand side of Eq. (2.3b), have been checked by
considering the motion of an oblate bubble with an aspect ratio of 2.05 to which suitable constant
velocity U and rotation rate X are applied (gravity is set to zero in these tests). The difference with
the analytical value of the corresponding added-mass coefficient is shown in Table 2.

5. An example of application: bubble path instability

Everyday evidence shows that millimetric bubbles rising in low-viscosity liquids do not follow a
straight trajectory. Instead, they rise in zigzag (within a given vertical plane) or in helix. Many
experiments have been carried out in the past to describe this phenomenon and try to understand
its origin (see Magnaudet and Eames, 2000 for a review). However it is only recently that ul-
trapurification techniques have made possible to study bubbles rising in ‘‘pure’’ water in which the
free-slip boundary condition (3.2c) is undoubtedly satisfied. Despite very careful experiments
performed with these new techniques (Duineveld, 1995; De Vries, 2001), the mechanism governing
the instability of the straight trajectory is not yet clear. This is due in particular to the fact that
shape oscillations may obviously exist for large enough bubbles and can interact with other in-
stability mechanisms. They can in particular trigger wake instabilities as was first suggested by
Saffman (1956). Even though they are not directly visible, small-amplitude capillary waves can
also propagate at the surface of moderate-to-high Reynolds-number bubbles and can similarly
promote such interactions. To determine whether or not such shape oscillations or deforma-
tions are crucial in the instability mechanism, a good alternative is to perform numerical simu-
lations with idealized bodies mimicking most of the properties of millimetric bubbles except their

Table 1

The rotating spherical bubble after a rotation angle kXkt ¼ 2:45 (kXk ¼ 1, Re ¼ 280)

Transverse velocity/rise velocity 1.3%

Error on the added-mass coefficient involved in the force �X � ðAU) 0.5%

Table 2

Numerical errors on the added-mass forces and torques on an ellipsoidal bubble

Added-mass contribution Error

�X � ðAUÞ 1.2%

�X � ðDXÞ 0.5%

�U� ðAUÞ 1.1%
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small-scale deformability. Since bubbles up to 3–4 mm in diameter rising in water are roughly
ellipsoids of revolution (with however a tendency to flatten at the front), the leading-order model
for a millimetric bubble is an inertialess oblate spheroid with a prescribed aspect ratio. If such
bodies are capable of exhibiting zigzag or helical paths in the same range of Reynolds numbers
and aspect ratios as real bubbles, one should probably conclude that small-scale deformations are
only a secondary ingredient in the mechanism.

This idealized model can easily be studied with the formulation developed in Section 3 and the
numerical code described in Section 4. Here we just present two examples of results obtained
through this technique with bubbles of aspect ratio v ¼ 2:05 and v ¼ 2:5, respectively. In both
cases the Galileo number Ga ¼ kgk1=2R3=2

eq =m is about 140, where Req is the equivalent radius of the
spheroid (in physical units, this corresponds to a bubble with Req ¼ 1:25 mm rising in water). The
bubble is initially at rest and is then set in motion by gravity. A small (typically 10�4 g) plane
periodic disturbance is applied to the gravity field g. Fig. 2a clearly shows that no path instability
occurs for v ¼ 2:05.

Fig. 2. Path of an ellipsoidal bubble with Ga ¼ 140; (a) v ¼ 2:05; (c) v ¼ 2:5. Inclination angle of the major axis;

(b) v ¼ 2:05; (d) v ¼ 2:5.
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In the second case (v ¼ 2:5) the picture is completely different and the bubble now follows a
well-defined zigzag path (Fig. 2c) in the plane corresponding to the initial disturbance. The time-
averaged rise Reynolds number is about 835 whereas it was about 1515 in Fig. 2a. The angle /
between the minor axis of the bubble and the vertical direction oscillates with a frequency fN ¼ 4:0
Hz corresponding to a Strouhal number St ¼ 2ReqfN=U about 0.03 (Fig. 2d). Examination of the
streamwise vorticity field plotted in Fig. 3 indicates the origin of the difference between the two
series of results: while the wake is stable for v ¼ 2:05 (i.e. almost axisymmetric with only a tiny
streamwise component of vorticity due to the body rotation imposed by the perturbation of the
gravity field), it is now unstable and vorticity is shed downstream in the form of a well-defined
double thread. This wake topology has already been observed in recent experiments (Lunde and
Perkins, 1997; De Vries, 2001) in the same range of Reynolds number (650 < Re < 900). From the
point of view of vorticity dynamics, the main difference between the two cases is that the vorticity
generated on the bubble surface is significantly larger for v ¼ 2:5 than for v ¼ 2:05 (for large
enough aspect ratios, the maximum vorticity on an ellipsoidal bubble increases as v8=3). Conse-
quently it appears that, for a given Galileo number, there is a threshold vc beyond which the flow
is not able anymore to evacuate vorticity just by an axisymmetric transport/stretching process. In
addition to the wake structure, other characteristics of this second case such as the frequency of
the zigzag motion and the rise Reynolds number are typically in the range of experimental ob-
servations. Quantitative differences with observations may however exist in vc as well as in the
frequency for many reasons. For instance surfactants are probably present in most experiments
(such as those of Lunde and Perkins, 1997 and Ellingsen and Risso, 2001) and they probably
lower somewhat vc. Capillary oscillations may result in the same tendency by increasing locally

Fig. 3. Isosurface xxReq=U1 ¼ �0:7 of the streamwise vorticity in the wake of an ellipsoidal bubble (v ¼ 2:5,
Re ¼ 835).
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the curvature of the surface and hence increasing the maximum vorticity. Nevertheless it appears
that vorticity generation on a curved shear-free surface coupled with the anisotropic added-mass
effects associated with ellipsoids is able to reproduce qualitatively the main trends displayed by
recent experiments. The results discussed in this section are only part of the more general analysis
of the path instability of a rising bubble that we are currently exploring. In particular, the present
model also reproduces the transition from the zigzag path to the helical path which is also fre-
quently observed in experiments. More details about the application of the present model to
this fascinating physical problem may be found in the recent paper by Mougin and Magnaudet
(2002).

6. Conclusion

In this work we have derived a rigorous method for coupling the Navier–Stokes equations
describing the flow field around a rigid, freely moving body with the force and torque balances
governing the motion of the body itself. This method is based on the central and now well-es-
tablished result that added-mass coefficients are independent on the strength of rotational effects,
including those due to viscosity. Systematic tests of the numerical implementation of this tech-
nique have been reported. They show that added-mass effects are accurately captured by the
numerical scheme. An evaluation of the time accuracy of the global coupling has also been carried
out. Finally we have shown how the whole technique applies to the study of path instability of a
high-Reynolds-number rising bubble. It turns out that the amount of vorticity generated by the
shear-free condition on the curved surface of the bubble is a crucial ingredient of the problem.
Below some critical aspect ratio of the bubble, this amount is moderate and the bubble rises along
a straight vertical path. In contrast, beyond a given threshold, vorticity is shed in the wake in the
form of a double thread. In the latter regime the bubble follows a zigzag or helical motion
characterized by a low-frequency oscillation. These results are in good qualitative agreement with
those of recent experiments and show that the present coupling technique opens new possibilities
for studying the subtle coupling mechanisms existing between wake instabilities and trajectories of
freely moving bodies.

Appendix A

To understand physically why the added-mass contribution is not affected by rotational effects,
let us consider the following example. The body (B) is assumed to be fixed and is surrounded by a
time-dependent rotational flow whose velocity and pressure fields are Vðx; tÞ and P ðx; tÞ, re-
spectively. Far upstream from the body the flow is assumed to have a uniform time-dependent
velocity; at time t ¼ t0 this upstream velocity is V1. During the time interval [t0; t0 þ Dt], the
upstream velocity experiences a change characterized by a constant acceleration a in a direction
whose unit vector is ea. Thus, setting Vðx; t0 þ sÞ ¼ Vðx; t0Þ þ v0ðx; sÞ and P ðx; to þ sÞ ¼ Pðx; t0Þþ
p0ðx; sÞ for s 2 ½0;Dt], the disturbance field (v0; p0) satisfies the set of equations:

r � v0 ¼ 0 ðA:1Þ
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ov0

ot
þ V � rv0 þ v0 � rVþ v0 � rv0 ¼ � 1

q
rp0 þ mr2v0 ðA:2Þ

v0 ! aðt � t0Þea for r � ea ! �1 ðA:3Þ
v0 � n ¼ 0 on ðSbÞ ðA:4Þ
n� v0 ¼ 0 on ðSbÞ ðA:5Þ

where we have assumed that the flow obeys a no-slip condition at the body surface. To determine
the order of magnitude of the various terms involved in the momentum equation (A.2), we in-
troduce three dimensionless parameters, namely Ac ¼ aR=V 2

1, Re ¼ RV1=m, and e ¼ aDt=V1,
where V1 ¼ kV1k and R is a typical lengthscale of the body. Normalizing each term of Eq. (A.2)
by V 2

1=R, we can conclude that the time-rate-of-change of v0 is OðAcÞ whereas the first two ad-
vective terms are OðeÞ and the third advective term is Oðe2Þ. The viscous term requires some more
attention because, owing to the boundary condition (A.5), the variation of the upstream condi-
tions between t ¼ t0 and t ¼ t0 þ Dt induces a Stokes layer of thickness dsðDtÞ  ðmDtÞ1=2 around
the body. Within this Stokes layer whose thickness can be rewritten within the dimensionless form
dsðDtÞ=R  ðe=ReAcÞ1=2, the viscous term is OðAcÞ. In contrast, outside the Stokes layer, this term
is only Oðe=ReÞ. The analysis of the disturbance flow within the Stokes layer is modified if instead
of the no-slip condition (A.5) we consider a shear-free boundary condition. In this case the
vorticity disturbance at the body surface is twice the product of the local curvature H of the
surface in the flow direction by the tangential velocity disturbance (Batchelor, 1967, p. 366).
Hence introducing the dimensionless curvature g ¼ RH we see that the dimensionless surface
vorticity is OðegÞ. From this it follows that within the Stokes layer (whose thickness is un-
changed), the viscous term of Eq. (A.2) is now OðgðeAc=ReÞ1=2Þ, i.e. it is smaller than in the case of
a no-slip surface by Oðgðe=AcReÞ1=2Þ.

Now let us consider the limit Dt ! 0, i.e. e ! 0. From the foregoing analysis we conclude that
everywhere (except right on the surface of the body in the case of a no-slip condition), the dis-
turbance flow (v0; p0) is governed by the momentum equation:

ov0

ot
¼ � 1

q
rp0 ðA:6Þ

Eqs. (A.1) and (A.6) supplemented by boundary conditions (A.3) and (A.4) are just those defining
a potential flow around (B). Hence we conclude that, whatever Re and Ac, the short-time be-
haviour of the disturbance produced by a change in the upstream flow conditions is that predicted
by potential flow theory. Consequently, the short-time changes experienced by the force and
torque acting on the body correspond to the irrotational added-mass effects produced by the
upstream condition (A.3). The above reasoning holds whatever the geometry of the body and it
can obviously be generalized to any kind of change in the upstream velocity, i.e. to any translation
or rotation. The same reasoning also holds if, instead of a change in the upstream conditions, we
consider a change in the kinematic condition (A.4), i.e. a variation in U, X, or in the orientation of
the body. The hydrodynamical interpretation of this general result is that the short-time distur-
bance produced by a non-deformable body moving in an incompressible unbounded flow is al-
ways dominated by the effect of the dipole associated with the body, irrespective of the strength of
rotational and viscous effects (Magnaudet and Eames, 2000).
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Having found the leading-order contribution to the force and torque, we can also use the above
order-of-magnitude analysis to evaluate the strength of the next contribution. First, using Green�s
theorem, the contribution of the advective terms in (A.2) can be expressed in the form of surface
integrals on (Sb) and (S1). The kinematic condition (A.4), the solenoidality of v0 and V, and the
vanishing of velocity gradients rv0 at infinity lead to the conclusion that only the termR
S1
Vv0 � ndS contributes to the resulting force and torque. Using the same normalization as above,

the added-mass force and torque are OðAcÞ and the advective contribution just mentioned is OðeÞ.
Similarly, the contribution of viscous effects coming from the bulk of the flow is Oðe=ReÞ. Finally
the contribution of viscous effects near the body can be obtained by integrating the corresponding
viscous term over the non-dimensional volume of the Stokes layer, that is Oððe=ReAcÞ1=2Þ. Hence
we find that the contribution of the Stokes layer to the force and torque is OððeAc=ReÞ1=2Þ in the
case of a no-slip boundary condition whereas it is only Oðgðe=ReÞÞ in the case of a shear-free
surface. From this analysis we conclude that in the limit e ! 0, the leading-order error made in
the evaluation of forces and torques by replacing the complete equation (A.2) by (A.6) is
Oððe=ReAcÞ1=2Þ for a solid body and OðMaxðe; e=Re; ge=ReÞÞ for a shear-free body. Hence in the
case of a solid surface this leading-order error always come from the fact that diffusion of vorticity
within the Stokes layer is neglected during the time interval Dt in (A.6). In contrast, the leading-
order error generally comes from the advective term, i.e. from advection and stretching of vor-
ticity in the far wake, for high-Reynolds-number shear-free bubbles; nevertheless the error is
smaller than in the no-slip case.
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